مکانیک آماری

مکانیک آماری، یکی از مباحث مطرح در فیزیک است که به سیستم‌هایی با تعداد متغیرهای بسیار زیاد می‌پردازد. این متغیرها می‌توانند ذراتی چون اتم‌ها، مولکول‌ها، یا ذرات بنیادی باشند که تعداد آن‌ها می‌تواند هم‌مرتبه با عدد آووگادرو باشد.





در این مبحث، با استفاده از خاصیتهای میکروسکوپی این ذرات مانند ساختار اتمی و برهمکنش بین آن‌ها، اطلاعاتی در مورد خواص ماکروسکوپی سیستم مانند فشار، انتروپی و انرژی آزاد گیبس، از طریق محاسبات و روش‌های آماری به دست می‌آید. مثلاً معادله‌های حالت در ترمودینامیک توسط مدل‌های میکروسکوپی-آماری مشتق می‌شوند.

مکانیک آماری شکوفایی خود را قبل از همه، مدیون دانشمندان کلاسیکی نظیر لودویگ بولتزمان، جوسایا ویلارد گیبز و جیمز کلرک ماکسول می‌باشد.





میانه‌ها و شاخص‌های آماری
میانه‌ها وشاخص‌های آماری ترتیبی

iامین شاخص آمار ترتیبی یک مجموعه n عضوی، iامین عضو کوچک است. به عنوان مثال، مینیمم یک مجموعه از اعضا، اولین شاخص آمار ترتیبی (i=۱)است و ماکزیمم، nامین شاخص آمار ترتیبی (i=n)است. میانه، به طور غیر رسمی، نقطهٔ میانی مجموعه‌است. هنگامی که n فرد است، میانه منحصر به فرد است که در i=(n+۱)/۲ رخ می‌دهد. وقتی n زوج است، دو میانه وجود دارند که در i=n/۲ و i=n/۲+۱ رخ می‌دهند. این مقاله انتخاب iامین شاخص آمار ترتیبی از یک مجموعه با n عضو مجزا را بیان می‌کند. مسئله انتخاب می‌تواند به طور رسمی به شکل زیر تعیین شود: ورودی: مجموعه A با n عدد(مجزا) و عدد i، که i بزرگتر یا مساوی ۱ و کوچکتر یا مساوی با n است. خروجی: عضو x در A که بزرگتر از دقیقا i-۱ عضو دیگر A می‌باشد. مسئله انتخاب می‌تواند در زمان (O(nlgn حل شود، چون می‌توانیم اعداد را با استفاده از مرتب سازی دودویی (heap sort) یا مرتب سازی ادغام مرتب کنیم و سپس به سادگی iامین عنصر در آرایه خروجی را مشخص کنیم اما الگوریتم‌های سریع تری وجود دارند. ابتدا مسئله انتخاب مینمم و ماکزیمم یک مجموعه از اعضا را بررسی می‌کنیم. مسئله جالب تر، مسئله انتخاب کلی است، که دردوقسمت بررسی می‌شود.قسمت اول یک الگوریتم عملی را تحلیل می‌کند که در حالت میانگین به زمان اجرای (O(n می‌رسد. قسمت بعد یک الگوریتم است که جنبه‌های نظری بیشتری داشته و در بدترین حالت به زمان اجرای (O(n می‌رسد.






مینیمم و ماکزیمم

چه تعداد مقایسه برای تعیین یک مجموعه n عضوی لازم است؟ می‌توانیم به سادگی به حد بالای n-۱ برای مقایسه‌ها برسیم: هر عضو مجموعه را به ترتیب بررسی کرده و کوچکترین عضوی که تا کنون دیده شده‌است را نگه می‌داریم. در روال زیر، فرض می‌کنیم مجموعه در آرایه A قرار دارد، که طول آرایه n است. قطعا یافتن ماکزیمم می‌تواند با n-۱ مقایسه نیز انجام شود. آیا این بهترین کاری است که می‌توانیم انجام دهیم؟ بله، چون می‌توانیم به حد پایین n-۱ برا مقایسه‌ها برای مینممم برسیم. الگوریتم را در نظر بگیرید که مینیمم را به صورت مسابقه‌ای بین عناصر تعیین می‌کند. هر مقایسه یک بازی در مسابقه‌است که در آن عنصر کوچکتر از میان دو عنصر، برنده می‌شود. نگرش اصلی این است که هر عنصر به جز برنده باید حداقل یک بازی را ببازد. از این رو n-۱ مقایسه برای تعیین مینیمم لازم است.






مینیمم و ماکزیمم هم زمان

در برخی کاربردها، باید هم مینیمم و هم ماکزیمم یک مجموعه از n عضو را پیدا کنیم. ارائه الگوریتمی که بتواند هم مینیمم و هم ماکزیمم n عضو را با استفاده از (θ(nمقایسه، که به طور مجانبی بهینه‌است، پیدا کند سخت نیست. به سادگی مینیمم و ماکزیمم را به طور مستقل، با استفاده از n-۱ مقایسه برای هر یک پیدا می‌کند، که در کل ۲n-۲ مقایسه انجام می‌دهد. در حقیقت، حداکثر ۳n/۲ مقایسه برای پیدا کردن مینیمم و ماکزیمم کافی است. استراتژی این است که اعضای مینیمم و ماکزیمم را که تا این جا دیده شده‌اند نگه داریم. به جای این که هر عضو ورودی را با مقایسه با مینیمم و ماکزیمم فعلی پردازش کنیم، که هزینه ۲ مقایسه برای هر عضو را صرف می‌کند، اعضا را جفت به جفت مقایسه می‌کنیم. ابتدا جفت عضوها را از ورودی با یکدیگر مقایسه می‌کنیم و سپس عضو کوچکتر را با مینیمم جاری و عضو بزرگتر را با ماکزیمم جاری مقایسه می‌کنیم که هزینه ۳ مقایسه برای هر دو عضو را موجب می‌شود.






انتخاب در زمان خطی مورد انتظار

مسئله انتخاب کلی نسبت به مسئله پیدا کردن یک مینیمم سخت تر به نظر می‌آیدو هم چنان که به صورت شگفت آوری زمان اجرای مجانبی هر دو مسئله یکی است: (θ(n.در این بخش یک الگوریتم تقسیم و حل را برای مسئله انتخاب ارائه می دهیم. الگوریتم Randomized-Select بعد از الگوریتم مرتب سازی سریع مدل می‌شود. همانند مرتب سازی سریع ایده آن است که آرایه ورودی را به طور بازگشتی تقسیم کنیم. ولی برخلاف مرتب سازی سریع که هر دو طرف تقسیم بندی را به صورت بازگشتی پردازش می‌کند، Randomized-Select فقط روی یک طرف تقسیم بندی عمل می‌کند. این تفاوت در تحلیل آشکار می‌شود. در حالی که زمان اجرای مورد انتظار مرتب سازی سریع (θ(nlgn است، زمان مورد انتظار این الگوریتم (θ(nاست. Randomized-Select از روال Randomized-Partition که در بخش مرتب سازی سریع معرفی شد استفاده می‌کند.






انتخاب در بدترین حالت زمان خطی

اکنون الگوریتمی را بررسی می کنیم که زمان اجرای آن در بدترین حالت (O(nاست. مانند Randomized-Select، الگوریتم Select عنصر مورد نظر را با تقسیم بندی بازگشتی آرایه ورودی پیدا می‌کند. اما ایده‌ای که پشت این الگوریتم وجود دارد، این است که یک قسمت خوب را در هنگامی که آرایه تقسیم می‌شود تضمین می‌کند. Select از الگوریتم تقسیم بندی قطعی Partition مربوط به مرتب سازی سریع استفاده می‌کند که طوری تغییر یافته است که عنصری که تقسیم بندی حول آن انجام می‌شود را به عنوان پارامتر ورودی بگیرد. این الگوریتم iامین عنصر کوچک از آرایه ورودی با n>1 عنصر را با اجرای مراحل زیر تعیین می‌کند.(اگر n=1باشد آن گاه Select به طور مطلق، تنها ورودیش را به عنوان iامین عنصر کوچک برمی گرداند.)

n عنصرآرایه ورودی را بهn/5 گروه 5 عنصری تقسیم کنید و حداکثر یک گروه از n mod 5 عنصر باقیمانده ساخته می‌شود.
میانه هر یک از n/5گروه را ابتدا با مرتب ساز درجی عناصر هر گروه (که حداکثر 5 عنصر در هر یک وجود دارد)و سپس انتخاب میانه از لیست مرتب شده عناصر گروه پیدا کنید.
از Select به صورت بازگشتی برای پیدا کردن میانه x از n/5میانه‌ای که در مرحله 2 پیدا شدند استفاده کنید.
آرایه ورودی را حول میانهٔ میانه‌ها (یعنی x)با استفاده از نسخه تغییر یافته Partition تقسیم کنید. فرض کنید k یک واحد بیشتر از تعداد عناصر در طرف کم تر تقسیم بندی باشد، بنابراین k، x امین عنصر کوچک است و n-k عنصر در طرف بیشتر تقسیم بندی موجود است.
اگر i=k باشد، x را برگردانید در غیر این صورت اگر i<k باشد از Select به صورت بازگشتی برای پیدا کردن iامین عنصر کوچک در طرف کم تر استفاده کرده یا اگر i>k باشد، از آن برای پیدا کردن (i-k)امین عنصر کوچک در طرف بیشتر استفاده کنید.

برای تحلیل زمان اجرای Select، ابتدا یک حد پایین روی تعداد عناصر بزرگتر از عنصر تقسیم کنندهٔ x تعیین می کنیم. حداقل نصفی از میانه‌های پیدا شده در مرحله 2 بزرگتر از x یعنی میانهٔ میانه‌ها هستند. بنابراین در حداقل نصف n/5گروه، 3 عنصر وجود دارند که از x بزرگترند، به جز برای گروهی که اگر5 به n قابل قسمت نباشد، کم تر از 5 عنصر دارد و گروهی که خود شامل x است. با منظور نکردن این دو گروه ثابت می‌شود که تعداد عناصر بزرگتر از x حداقل برابر است با

3(2-1/2n/5)

که این عبارت بزرگتر یا مساوی با 3n/10-6 است. به طور مشابه عناصری که کوچک تر از x هستند حداقل 3n/10-6 است. بنابراین در بدترین حالت، Select برای حداکثر 7n/10+6 عنصر در مرحلهٔ 5 به طور بازگشتی فراخوانی می‌شود.





توان آماری

توان یک آزمون آماری احتمال رد کردن فرض صفر اشتباه می‌باشد (احتمال آنکه تست آماری مرتکب خطای نوع دوم نشود). هر چه توان یک تست بیشتر باشد احتمال وقوع خطای نوع دوم کمتر خواهد بود.

محققان همیشه نگران این بوده اند که نکند فرضیه صفر را رد کنند در حالی که در واقع درست بوده است (تست آماری مرتکب خطای نوع یک شود) یا اینکه نتوانند فرضیه صفر را رد کنند در حالی که این روش های استفاده شده بوده اند که اثری واقعی داشته‌اند (تست آماری مرتکب خطای نوع دو شود). توان آماری یک تست، احتمال آن است که منجر به این میشود که شما فرضیه صفر را رد کنید وقتی فرضیه در واقع غلط است. چون بیشتر تست های امری در شرایطی انجام میشوند که عامل اصلی(treatment)، حداقل کمی اثر روی نتیجه دارد، توان آماری به صورت احتمال اینکه آن تست "منجر به نتیجه گیری درستی در مورد فرضیه صفر میشود"، تعبیر میشود.

توان یک تست آماری عبارت است از: یک، منهای احتمال ایجاد خطای نوع دو. یا به عبارتی، احتمال اینکه شما از خطای نوع دو دوری میکنید.

در مطالعات با توان آماری بالا، خیلی کم پیش میاید که در تشخیص اثرات تمرین اشتباه کنند.

توان یک تست آماری، شامل عملکردِ: حساسیت، اندازه اثر در جمیعت آماری، و استاندارد های استفاده شده برای اندازه گیری فرضیه آماری است. - ساده ترین راه برای افزایش حساسیت یک تحقیق، افزایش تعداد آزمودنی هاست. - در مورد استاندارد، ساده تر آن است که فرضیه صفر را رد کنیم اگر سطح معناداری، ۰.۰۵ باشد تا ۰.۰۱ یا ۰.۰۰۱.

سه قدم برای تعین توان آماری: ۱- مشخص کردن حد، برای معنی دار بودن آماری. فرضیه چیست؟ سطح معناداری چقدر است؟

۲- حدس زدن اندازه اثر. انتظار دارد که درمان(treatment)، دارای اثری کم، زیاد، یا متوسط باشد؟





احتمالات

بطور ساده، احتمالات (به انگلیسی: Probability) به شانس وقوع یک حادثه گفته می‌شود.

احتمال معمولا مورد استفاده برای توصیف نگرش ذهن نسبت به گزاره هایی است که ما از حقیقت انها مطمئن نیستیم. گزاره های مورد نظر معمولا از فرم "آیا یک رویداد خاص رخ می دهد؟" و نگرش ذهن ما از فرم "چقدر اطمینان داریم که این رویداد رخ خواهد داد؟" است. میزان اطمینان ما، قابل توصیف به صورت عددی می باشد که این عدد مقداری بین 0 و 1 را گرفته و آن را احتمال می نا میم. هر چه احتمال یک رویداد بیشتر باشد، ما مطمئن تر خواهیم بود که آن رویداد رخ خواهد داد. درواقع میزان اطمینان ما از اینکه یک واقعه (تصادفی) اتفاق خواهد افتاد.






نظریهٔ احتمالات

نظریهٔ احتمالات به شاخه‌ای از ریاضیات گویند که با تحلیل وقایع تصادفی سروکار دارد.

مانند دیگر نظریه ها، نظریه احتمال نمایشی از مفاهیم احتمال به صورت شرایط صوری (فرمولی) است – شرایطی که می‌تواند به طور جدا از معنای خود در نظر گرفته شود. این فرمولبندی صوری توسط قوانین ریاضی و منطق دستکاری، ونتیجه های حاصله، تفسیر و یا دوباره به دامنه مسئله ترجمه می شوند.

حداقل دو تلاش موفق برای به بصورت فرمول دراوردن احتمال وجود دار : فرمولاسیون کولموگروف و فرمولاسیون کاکس. در فرمولاسیون کولموگروف (نگاه کنیدبه )، مجموعه ها به عنوان واقعه و احتمالات را به عنوان میزانی روی یک سری از مجموعه ها تفسیرمی کنند. در نظریه کاکس، احتمال به عنوان یک اصل (که هست، بدون تجزیه و تحلیل بیشتر) و تاکید بر روی ساخت یک انتساب سازگار از مقادیر احتمال برای گزاره ها است. در هر دو مورد، قوانین احتمال یکی هستند مگر برای جزئیات تکنیکی مربوط به آنها.

روشهای دیگری نیز برای کمی کردن میزان عدم قطعیت، مانند نظریه Dempster-Shafer theory یا possibility theory وجود دارد ، اما آن ها به طور اساسی با آنچه گفته شد، تفاوت دارند و با درک معمول از قوانین احتمال سازگار نیستند.






تاریخچه

مطالعه علمی احتمال، توسعه ای مدرن است. قمارنشان می دهد که علاقه به ایده های تعیین کمیت برای احتمالات به هزاران سال می رسد، اما توصیفات دقیق ریاضی خیلی دیرتر به وجود آمد. دلایلی البته وجود دارد که توسعه ریاضیات احتمالات را کند می کند. در حالی که بازی های شانس انگیزه ای برای مطالعه ریاضی احتمال بودند، اما مسائل اساسی هنوز هم تحت تاثیر خرافات قماربازان پوشیده می شود.

به گفته ریچارد جفری، "قبل از اواسط قرن هفدهم، اصطلاح ‘’ احتمالی’’ به معنای قابل تایید (تصویب) و در آن معنا چه برای عقیده افراد و چه برای عمل مورد استفاده بود. در واقع افکار یا اقدام احتمالی، رفتاری بود که مردم معقول درآن شرایط از خود نشان می دادند." البته به خصوص در زمینه های قانونی ،احتمالی (به انگلیسی: Probability) همچنین می تواند به گزاره ای که شواهد خوبی برای اثبات آن وجود دارد، اطلاق شود.

گذشته از کار ابتدایی توسط Girolamo Cardano در قرن 16 اصول احتمالات به مکاتبات پیر دو فرما و بلز پاسکال (1654). کریستین هویگنس (1657) اولین مدل شناخته شده علمی از این موضوع را داد. یاکوب برنولی ARS Conjectandi (منتشرشده پس ازمرگ،1713) و اصول شانس Abraham de Moivre (1718) این موضوع را به عنوان شاخه ای از ریاضیات مطرح می کند. برای تاریخچه ای از توسعه های اولیه مفهوم احتمال ریاضی، ظهور احتمال هک ایان و علم حدس جیمز فرانکلین را ببینید.

تئوری خطاها ممکن است از Roger Cotes's Opera Miscellanea (منتشرشده پس ازمرگ،1722) سرچشمه گرفته باشد، اما شرح حالی که توماس سیمپسون در سال 1755 آماده کرد(چاپ 1756)، برای اولین بار اعمال این نظریه به بحث در مورد خطاهای مشاهده است. چاپ مجدد (1757) این شرح حال نشان می دهد که خطاهای مثبت و منفی هر دو به یک اندازه قابل پیشبینی هستند، و با اختصاص برخی از محدودیت های معین، بازه ای برای تمام خطاها ارائه می دهد.سیمپسون همچنین در مورد خطاهای پیوسته بحث می کند و یک منحنی احتمال را توصیف می کند.

پیر سیمون لاپلاس(1774) برای اولین بار سعی دراستنتاج قانونی برای توصیف مشاهدات از نظر اصول تئوری احتمالات کرد. او قانون احتمال خطاها را با یک منحنی به صورت y = \phi(x), x ، x هر نوع خطا و y احتمال آن معرفی می کند و 3 خاصیت برای این منحنی وضع می کند:

نسبت به محور y متقارن است
محور x مجانب است، احتمال خطا در \infty صفر است
مساحت زیر نمودار آن برابر 1 است.

او همچنین، در سال 1781، یک فرمول برای قانون امکان خطا ( اصطلاحی که لاگرانژ سال 1774 مورد استفاده قرار داد) ارائه کرد، اما به معادلات منظمی منجر نشد.

به طور کلی پیدایش فنون و مفاهیم مربوط به احتمالات را باید به آغاز مدل‌سازی ریاضی و استخراج و اکتشاف دانش در زمینه‌های پیچیده تر علوم نسبت داد.






تفسیرها و تحلیل‌های مفاهیم احتمالات

کلمه احتمال تعریف مفرد مستقیم برای کاربرد عملی ندارد. در واقع، چندین دسته گسترده از تفسیر احتمال، که پیروان دارای دیدگاه های مختلف (و گاهی متضاد) در مورد ماهیت اساسی احتمال وجود دارد.

Frequentists
Subjectivists
Bayesians







کاربردها

نظریه احتمال در زندگی روزمره در ارزیابی ریسک و در تجارت در بازار کالاها اعمال می شود. دولت ها به طور معمول روش های احتمالاتی را در تنظیم محیط زیست اعمال می کنند، که آن را تجزیه و تحلیل مسیر می نامند. یک مثال خوب اثر احتمال هر گونه درگیری گسترده در خاورمیانه بر قیمت نفت است، که اثرات موج واری روی اقتصاد کل جهان می گذارد. ارزیابی که توسط یک معامله گر کالا زمانیکه احتمال جنگ بیشترباشد، در مقابل حالتی که احتمال کمتری دارد، قیمت ها را بالا و پایین می فرستد و معامله گران دیگر را نیز از نظرات خود آگاه می کند. در واقع، احتمالات (در تجارت) به طور مستقل ارزیابی نمی شوند و لزوما عقلانی نیستند. تئوری های رفتار مالی برای توصیف اثر فکر گروهی در قیمت گذاری ، در سیاست، و در صلح و درگیری ظهور کردند.

می توان گفت که کشف روش های جدی برای سنجش و ترکیب ارزیابی های احتمال، عمیقا جامعه مدرن را تحت تاثیر قرار داده است. مثلا اکثر شهروندان اهمیت بیشتری به اینکه چگونه ارزیابی های احتمال وشانس ساخته می شوند، می دهند واینکه تاثیر آنها در تصمیم گیری ها بزرگتر و به ویژه در دموکراسی چگونه است.

یکی دیگر از کاربردهای قابل توجه نظریه احتمال در زندگی روزمره، قابلیت اطمینان می باشد. بسیاری از محصولات مصرفی، از جمله خودروها و لوازم الکترونیکی مصرفی، در طراحی خود به منظور کاهش احتمال خرابی(شکست) از نظریه قابلیت اطمینان استفاده می کنند. تولید کننده با توجه به احتمال خرابی یک محصول، آنرا گارانتی می کند.






علوم اجتماعی

نقش پایه و اساس را برای بیشتر علوم اجتماعی داراست. آزمونهای آماری فواصل اطمینان شیوه‌های رگرسیون (پس رفت)





توزیع احتمال
در نظریه احتمال و آمار تابع توزیع احتمال بیانگر احتمال هر یک از مقادیر متغیر تصادفی (در مورد متغیر گسسته) و یا احتمال قرار گرفتن متغیر در یک بازه مشخص (در مورد متغیر تصادفی پیوسته) میباشد. توزیع تجمعی احتمال یک متغیر تصادفی تابعی است از دامنهٔ آن متغیر بر بازهٔ 0,1. به طوری که احتمال رخدادن پیشامدهای با مقدار عددی کمتر از آن را نمایش می‌دهد.





روش‌های آمارگیری
در آمار کاربردی، روش‌های آمارگیری روش‌هایی برای نمونه‌برداری از یک جامعه آماری هستند که به منظور بهبود میزان پاسخ و دقت پاسخ به آمارگیری تدوین می‌شوند. سنجه‌های اندازه‌گیری شده آماره نام دارند که به منظور استنباط آماری در مورد کل جامعه طراحی می‌شوند. گه‌گاه آماره‌هایی توصیفی نیز گردآوری می‌شوند. نظرسنجی‌ها، پرسشنامه‌ها، و سرشماری‌ها در مورد وضعیت سلامت یا بازار مثال‌هایی از آمارگیری هستند. آمارگیری ابزار مهمی برای تحقیق در مورد جنبه‌های مختلف جامعه است و اطلاعات مهمی را در اختیار می‌گذارد؛ از جمله زمینه‌هایی که آمارگیری در آن کاربر دارد به بازاریابی، روانشناسی، سلامت عمومی، و جامعه‌شناسی اشاره کرد.





داده

به طور کلی، می‌توان همهٔ دانسته‌ها، آگاهی‌ها، داشته‌ها، آمارها، شناسه‌ها، پیشینه‌ها و پنداشته‌ها را داده یا دیتا (به انگلیسی: Data) نامید. انسان برای ثبت و درک مشترک هر واقعیت و پدیده از نشانه‌های ویژهٔ آن بهره گرفته‌است.

انسان برای نمایاندن داده‌ها نخست از نگاره و در ادامهٔ سیر تکاملی آن از حروف، شماره‌ها و نشانه‌ها کمک گرفت. برای بازنمودن داده‌ها از این موارد کمکی یا ترکیبی از آن‌ها استفاده می‌شود
در رایانه

به اعداد، حروف و علائم که جهت درک و فهم مشترک از انسان‌ها یا رایانه سرچشمه می‌گیرند داده می‌گویند. داده‌ها معمولاً از سوی انسان‌ها بصورت حروف، اعداد، علائم و در رایانه به صورت نمادهایی (همان رمزهای صفر و یک) قراردادی ارائه می‌شوند. اصطلاح داده یک عبارت نسبی است یعنی اگر موجب درک و فهم لازم و کامل دراین مرحله شده‌است به عنوان آگاهی یا اطلاعات از آن نام می‌برند و چنانچه موجب درک و فهم کامل نگردد به عنوان همان داده به شمار می‌آیند و چون هدف نهایی آگاهی و اطلاعات است باید از سوی دست‌اندرکاران (انسان یا رایانه) دستکاری یا پردازش شوند. منظور از دستکاری یا پردازش داده‌ها انجام عملیاتی از قبیل جمع، تفریق، ضرب، تقسیم، مقایسه وغیره‌است.

داده‌ها مجموعه‌ای از نمادها (برای انسان حروف، اعداد، علائم و برای رایانه رمزهای صفر و یک) هستند که حقایق را نشان می‌دهند و برای انسان از طریق رسانه‌های وی (بینایی، شنوایی، چشایی، بویایی، بساوایی) و برای رایانه از طریق لوازم ویژه (صفحه کلید موس و غیره) به دست می‌آیند.

داده‌ها امروزه فقط از سوی انسان یا رایانه پردازش می‌شوند یعنی کارهایی روی آن‌ها صورت می‌گیرد. در پردازش داده‌ها (داده‌پردازی) در رایانه ابتدا داده‌ها به رایانه وارد می‌شوند. این داده‌ها درابتدا ذخیره شده و روی آن‌ها عملیاتی (جمع، تفریق، ضرب، تقسیم و...) صورت می‌گیرد. پس از این که این عملیات (پردازش) صورت گرفت معمولاً داده‌ها به یک رایانه دیگر یا دوباره به انسان‌ها منتقل می‌شود. در اغلب گزارش‌ها و یادداشت‌های سازمانی، داده‌ها به چشم می‌خورند. برای نمونه، تاریخ و مقدار یک صورت‌حساب یا چک، جزئیات فهرست حقوق، تعداد وسایل نقلیه‌ای که از نقطهٔ خاصی در کنار جاده گذشته‌اند،... نمونه‌هایی از داده‌ها هستند.
انواع داده‌ها از نظر ساخت‌یافتگی

داده‌های ساخت‌یافته
داده‌های نیمه‌ساخت‌یافته







داده‌های زمانی
در بسیاری از کاربردهای مبتنی بر داده‌ها و اطلاعات ذخیره‌سازی و بازیافت حالا ت و وضعیت‌های سیستم در طی زمان اهمیت می‌یابد.





قضاوت

قضاوت در بافت حقوقی ، به معنی کشف حقیقت در نزاع چند طرف که در نهایت به ارائه حکمی از سوی نهاد متصدی قضاوت و لازم الاجراء از سوی حکومت برای پایان دادن به اختلاف میان آنها منجر می شود .





بیانیه
بیانیه متنی است که یک شخص یا گروه از آن برای بیان اصول، عقاید و اهداف خود به عموم استفاده می‌کند. رسمیت بیانیه‌ها، با توجه به بیان‌کنندهٔ آن‌ها و مطالب بیان‌شده، به دو دستهٔ رسمی و غیررسمی طبقه‌بندی می‌گردد.





استدلال

استدلال، ترکیب قانون‌مند قضیه(های) معلوم برای رسیدن به قضیه(های) تازه است. در استدلال، ذهن بین چند قضیه، ارتباط برقرار می‌کند تا از پیوند آن‌ها، نتیجه زاده شود و به‌این‌ترتیب نسبتی مشکوک و مبهم به نسبتی یقینی تبدیل شود.






انواع استدلال

تمثیل

تمثیل سرایت دادن حکم یک موضوع به موضوع دیگر به دلیل مشابهت آن دو به یکدیگر است.







استقرا

استقرا نوعی استدلال است که در آن ذهن از جزء به کل سیر می‌کند. یعنی چند مورد جزئی را مشاهده می‌کند و سپس یک حکم کلی می‌دهد. مثلا در چند مورد آب را حرارت می‌دهیم و می‌بینیم که در صد درجه سلسیوس می‌جوشد و از این نتیجه می‌گیریم که هر آبی در صد درجه سلسیوس می‌جوشد.







قیاس (استنتاج)

اما وقتی ذهن از قضیه‌های کلّی به نتیجه‌های جزئی می‌رسد و به عبارت مختصرتر از کلّ به جز می‌آید، آن را قیاس می‌نامند. مثال:

«۱. سقراط انسان است.

۲. هر انسان فانی است.

۳. پس سقراط فانی است.»

در استدلال قیاسی از حداقل دو قضیهٔ درست، ضرورتا و بدون هیچ تردیدی قضیهٔ درست دیگری به نام نتیجه به دست می‌آید.





حقیقت
حقیقت مفهوم و اصطلاحی است برای اشاره به اصل هر چیز استفاده می‌شود.






واژه‌شناسی

واژه حقیقت وام‌واژه‌ای است که از واژه عربی حقیقة وارد فارسی شده‌است. معادل انگلیسی واژه حقیقت واژهٔ Truth می‌باشد.






تفاوت حقیقت و واقعیت

حقیقت شامل ذات هر چیزی بوده و غیر قابل تغییر است و به همین دلیل بر خلاف واقعیت امری است که لزوماً با برهان‌های علمی قابل اثبات نیست. در بسیاری موارد حقیقت ( به دلیل اینکه از دسترس انسان به حیطه ذات به دور است )به نوع نگرش افراد بستگی پیدا میکند. بطور مثال واقعیت و حقیقت واقعه کربلا را می‌توان به این دو صورت بیان کرد.

واقعیت: حسین و یارانش به سمت کوفه حرکت کردند، لشکریان یزید در محلی به نام کربلا بر آنها حمله کردند، و حسین کشته شد. و یزید پیروز این جنگ بود.

اما حقیقت می‌تواند این باشد:

در واقعه کربلا امام حسین و یاران با وفایش برای نجات دین اسلام تصمیم به هجرت به کوفه گرفتند. اما لشکریان یزید ملعون به آنان حمله کردند و در این واقعه امام حسین به شهادت رسید. و امام حسین توانست با نثار خون خود اسلام را زنده نگاه دارد و به حق او پیروز این میدان بود.


اگر در ریشهٔ واژگان حقیقت و واقعیت دقیق شویم، تفاوت‌هایی را مشاهده می‌کنیم. ریشهٔ کلمهٔ حقیقت، "حق" به معنای راستی و درستی است و ریشهٔ کلمهٔ واقعیت، "وَقَعَ" به معنای رویدادن و یا اتفاق افتادن است. حقیقت، اشاره به ماهیت راست و درست دارد و واقعیت اشاره به امور عینی و یا اموری که اتفاق می‌افتند.

یک نگرش افراطی حقیقت یک واقعه تاریخی را جز بیان عواطف و احساسات گوینده در رابطه با آن واقعه نمی‌داند و هدف آن جذب باور به حقیقت گفته شده است.






حقیقت و واقعیت در اندیشه‌های متفکران و فلاسفه

در یونان باستان، نوعی تفکر اسطوره‌ای نسبت به مقولهٔ حقیقت و واقعیت وجود داشته که طی سیر تحول به مذهب و باورهای مذهبی تبدیل شده است. این مساله در هر تمدن دیگری نیز مشاهده می‌شود. تمدن‌های بین‌النهرین، هند و چین همگی چنین سیر تحولی را طی کرده‌اند.

تفکر اسطوره‌ای، طی تکاملش به صورت مثالی افلاطونی رسید که گونه‌ای تفکر مذهبی است. در اندیشه‌های مذهبی مانند سه مذهب زرتشتیت، مسیحیت و اسلام تمایز و جدایی واقعیت مادی و حقیقت وجود دارد.

دیدگاه عرفاً پیرامون حقیقت و واقعیت، شکل متکامل تفکرات دینی است.

آراء و اندیشه‌های متفکرین دوران مدرن و همچنین تحولاتی که در نوع نگاه انسان‌ها در جامعهٔ مدرن نسبت به حقیقت حاصل شده، باعث شده است تا مسیر گسست از اندیشه‌های اسطوره‌ای به اندیشه‌های دینی در دوران مدرن دچار واگشت و یا تغییر مسیر شود. یعنی تمایز و گسست حقیقت و واقعیت دوباره به اتحاد آن دو منجر شده است. در اصل، ظهور رئالیسم جدید و همچنین اومانیسم مدرن، نمایانگر گونه‌ای بازگشت به اصول کلاسیک یونانیان است. بشر در دوران مدرن اعتقاد یافت که طی سالیان درازی، دچار خطا شده است، از این رو دوباره به تفکر یونانی رجعت کرد.

در اندیشه‌های ماتریالیست‌ها و مارکسیست‌ها از جمله فوئرباخ، مارکس و انگلس و پیروان آن‌ها، ماده‌گرایی که خود یکی از ثمرات مدرنیته است، نمایشگر رجعت انسان به یکی انگاشتن حقیقت و واقعیت است. با این تفاوت که از نگاه ماتریالیست‌ها، حقایق، قوانینی هستند که بر واقعیات حاکم‌اند. به طور مثال، نیروی محرکهٔ تاریخ که بر وقایع تاریخی احاطه دارد، حقیقتی دربارهٔ جهان و هستی است.

اندیشه‌های فردریش ویلهلم نیچه، فیلسوف نامدار آلمانی دربارهٔ حقیقت از اهمیت بسیار بالایی برخوردار است. چون او، نوع نگاه انسان به حقیقت را دگرگون کرد و با وهمی خواندن حقیقت، به تبیین یک نگاه کاملاً نسبی‌گرایانه پرداخت. نسبیت حقیقت که با نیچه آغاز شد در نهایت به مکاتب و تفکراتی از جمله هرمنوتیک، مکتب فرانکفورت و پست‌مدرنیسم منجر شد.

اندیشه‌های نسبی‌گرایانهٔ نیچه در باب حقیقت و واقعیت به شکلی رادیکال در آراء متفکران پست مدرنی چون ژان فرانسوا لیوتار، ژاک دریدا، ژیل دلوز، میشل فوکو و ژان بودریار دوباره مطرح شد.
4:31 am
اسب‌های وحشی در حال حاضر
اسب وحشی راستین اسبی است که هیچ نیایی نداشته باشد که توسط انسان اهلی شده باشد. با این
حال بیشتر اسب‌هایی که امروزه «وحشی» خوانده می‌شوند در حقیقت اسب‌هایی هستند که نیاکانشان
به دلایل گوناگون از گله‌ای که درشان بوده‌اند جدا شده و اندک اندک به روش زندگی پیشین بازگشته‌اند.

تنها دو زیرگونه اسب وحشی راستین تارپان و شوالسکی توانستند به روزگار کنونی برسند و از آن میان نیز
تنها دومی امروزه باقی‌مانده است.






اسب شوالسکی (با نام علمی Equus ferus przewalskii) که پس از نیکولای شوالسکی کاشف روس
نامگذاری شد زیرگونه‌ای کمیاب از اسب است. این جانور با نام «اسب وحشی مغولستان» نیز شناخته
می‌شود. مردم مغولستان آن را با نام تاکی می‌شناسند و قرقیزها آن را کیرتاگ صدا می‌کنند. این زیرگونه
میان سال‌های ۱۹۶۹ تا ۱۹۹۲ در طبیعت منقرض شده بود، با این حال دسته‌های کوچکی از آن‌ها در
باغ‌وحش‌های سراسر جهان نگهداری می‌شدند. در ۱۹۹۲، در پی تلاش‌های چند باغ‌وحش برای بازگرداندن
آن به حیات وحش،
اسب‌های شوالسکی وحشی در مغولستان رها شدند و امروزه می‌توان آن‌ها را در این کشور یافت.تارپان یا
اسب وحشی اروپایی (با نام علمی Equus ferus ferus) در اروپا و بیشتر آسیا یافت می‌شد. این جانور دوران
تاریخی را پشت سر گذاشت ولی در ۱۹۰۹ منقرض شد. در این سال واپسین اسب در اسارت در باغ وحشی
در روسیه درگذشت،و بدین وسیله، تبار ژنتیکی از دست رفت. تلاش‌هایی برای بازآفرینی تارپان انجام گرفته
که منجر به تولید اسب‌هایی با ویژگی‌های ظاهری بیرونی همانند با اسب‌های وحشی پیشین شده است،
اما به دلیل آنکه والدین این اسب‌ها وحشی نبوده‌اند، نمی‌توان اسب‌های جدید را وحشی دانست.





زیست
طول عمر و مرحله‌های زندگی

طول عمر یک اسب اهلی امروزی به نژاد، روش نگهداری و شرایط محیطی بستگی دارد اما می‌توان امید
داشت که یک اسب میان ۲۵ تا ۳۰ سال عمر کند. البته گونه‌های غیرمعمولی وجود دارد که تا ۴۰ سال و
گاهی بیشتر هم عمر می‌کنند. پیرترین اسبی که برای وجود آن سند در دسترس است بیلی پیر نام دارد که
در سدهٔ ۱۹ میلادی زندگی می کرده و تا سن ۶۲ سالگی رسیده بود. «شوگر پوف» نام یک اسب از نژاد
پونی است که توانسته بود لقب پیرترین اسب زنده را از آن خود کند و نامش را میان رکوردهای جهانی گینس
ثبت کند؛ این اسب در سن ۵۶ سالگی در ۲۰۰۷ از دنیا رفت.

بدون در نظر گرفتن روز تولد هر اسب، برای بیشتر مسابقه‌ها، هر سال در یک ژانویه در نیم کرهٔ شمالی و در
یک اوت در نیم کرهٔ جنوبی به عدد سن اسب یک سال افزوده می‌شود ولی برای اسب‌هایی که در مسابقهٔ
سواری استقامت شرکت می‌کنند این معیار برقرار نیست، برای این اسب‌ها حداقل سن اسب مهم است و
این سن از روی تاریخ دقیق تولد اسب سنجیده می‌شود.



اندام

قد اسب‌ها از جدوگاه آن‌ها سنجیده می‌شود؛ جایی که گردن به پشت جانور می‌رسد. این نقطه از آن رو به
عنوان مرجع به کار می‌رود که نقطه‌ای پایدار از دیدگاه کالبدشناسی است. بر خلاف سر یا گردن، ارتفاع
جدوگاه با حرکت دادن بخش‌های مختلف بدن چون سر و گردن تغییر نمی‌کند.

اندازه اسب‌ها بسته به نژادشان فرق می‌کند، ولی به رژیم غذایی هم مرتبط می‌شود. اسب‌های سواری
کم‌وزن قدی میان ۱۶۳–۱۴۲ سانتی‌متر دارند و وزنشان به ۵۵۰–۳۸۰ کیلوگرم می‌رسد. اسب‌های سواری
بزرگتر قدی بالاتر از ۱۵۷ سانتی‌متر دارند و اغلب بیشتر از ۱۷۳ سانتی‌متر می‌شوند. آن‌ها همچنین وزنی
میان ۶۰۰–۵۰۰ کیلوگرم دارند. اسب‌های سنگین‌وزن اغلب کمینه ۱۶۳ سانتی‌متر قد با بیشینه‌ای برابر با
۱۸۳ سانتی‌متر، و وزنی میان ۱۰۰۰–۷۰۰ کیلوگرم دارند.

احتمالاً بزرگترین اسب ثبت‌شده در تاریخ اسبی شایری به نام «سمپسون» بود که در ۱۸۴۸ به دنیا آمد. او
۲۲۰ سانتی‌متر طول و ۱۵۰۰ کیلوگرم وزن داشت. امروزه مقام کوچک‌جثه‌ترین اسب جهان متعلق به تامبلینا
است؛ اسبی بالغ و مینیاتوری که مبتلا به کوتولگی است. قد تامبلینا ۴۳ سانتی‌متر و وزنش ۲۶ کیلوگرم
است.




پونی

از نظر ریشه، پونی و اسب‌های معمولی هر دو از خانوادهٔ اسبیان اند. تفاوت اصلی میان آن دو در بلندی قد
آن‌ها است این تفاوت بویژه هنگام شرکت در مسابقه مورد توجه قرار می‌گیرد. پونی‌ها و اسب‌های معمولی
از نظر رُخ‌مان و خوی هم با هم متفاوتند.

استاندارد سنتی برای بلندی یک اسب یا پونی در هنگام بزرگسالی، ۱۴٫۲ وجب (۱۴۷ سانتیمتر) است. اگر
قد حیوان برابر با ۱۴٫۲ وجب یا بیشتر بود حیوان، اسب خوانده می‌شود اما اگر قدش کوتاه تر بود، پونی
دانسته می‌شد. البته استثناهای زیادی برای این پیمانهٔ سنجش وجود دارد. در استرالیا پونی به آن‌هایی
گفته می‌شود که قدی کوتاه تر از ۱۴ وجب (۱۴۲ سانتیمتر) دارند. برای مسابقه در سرزمین‌های غربی ایالات
متحده، این معیار ۱۴٫۱ وجب (۱۴۵ سانتیمتر) است. فدراسیون ورزش‌های سوارکاری، بلندی اندام اسب را
در سامانهٔ متری می‌سنجد و به آن‌هایی پونی می‌گوید که بدون نعل، قدی کوتاه تر از ۱۴۸ سانتیمتر در
جلوگاه داشته باشند. که اگر نعل اسب را در نظر بگیریم به ۱۴٫۲ وجب یا ۱۴۹ سانتیمتر می‌رسیم.

بلندی تنها معیار سنجش پونی از اسب نیست. دفترهای ثبت نژاد اسب گاهی اسب‌هایی دارند که قدشان
از معیار ۱۴٫۲ وجب بیشتر یا کمتر است آن‌ها می‌گوید نه به قد، بلکه به پدر و مادر حیوان باید نگاه کرد و از
روی آن نژادش را ثبت کرد. چون پونی‌هایی دیده شده که ویژگی‌های مشترکی با اسب‌های معمولی دارند و
گاهی بلندی آن‌ها بیش از ۱۴٫۲ وجب است اما همچنان پونی دانسته می‌شوند.

پونی‌ها معمولاً، یال، دُم و در مجموع پوشش ضخیم تری دارند. همچنین به نسبت پاهایی کوتاه تر، قوس
شکم پهن تر، استخوان‌های سنگین تر، گردن کلفت تر و کله‌ای کوتاه با پیشانی پهن دارند. این جانور از اسب
آرام تر است و در عین حال از هوش خوبی برخوردار است که گاهی از آن برای همکاری با انسان بهره
می‌برد. اندام کوچک تنها نشانهٔ این حیوان نیست برای نمونه پونی شتلند که به طور متوسط ۱۰ وجب یا ۱۰۲
سانتیمتر است هم یک پونی دانسته می‌شود. در مقابل گونه‌هایی از اسب مانند فالابلا و اسب‌های
مینیاتوری یا کوچک‌اندام که بلندی آن‌ها به بیش از ۷۶ سانتیمتر نمی‌رسد در دفترهای ثبت نژاد به عنوان «
اسب بسیار کوچک» رده بندی شده‌اند و نه پونی.




رنگ

اسب‌ها رنگ بدن‌های بسیار متنوعی دارند. اغلب اسب را نخست با رنگ بدنش معرفی می‌کنند، سپس نژاد
یا جنسیت. اسب‌های هم‌رنگ از روی تفاوت در وسم‌های سفید روی پوستشان شناسایی می‌شوند؛
وسم‌هایی که در کنار الگوهای متنوع خال‌داشتن پوست، مستقل از رنگ پوست بدن به ارث برده می‌شوند.

بسیاری از ژن‌هایی که الگوها و رنگ‌های پوست بدن اسب‌ها را تولید می‌کنند شناسایی شده‌اند.
آزمایش‌های ژنتیکی کنونی توانسته‌اند کمینه ۱۳ الل گوناگون موثر بر رنگ پوست را پیدا کنند، و پژوهش بر
روی یافتن ژن‌های جدید مرتبط با ویژگی‌های این جانور ادامه دارد. رنگ‌های اصلی بدن اسب‌ها یعنی کرنگ و
سیاه توسطی ژنی کنترل‌شده توسط گیرنده ملانوکورتین ۱ تعیین می‌شوند. این ژن با نام‌های «ژن
گسترش» یا «فاکتور قرمز» نیز شناخته می‌شود، چرا که فرم مغلوب آن قرمز رنگ است و فرم غالبش
سیاه.[۴۹] ژن‌های اضافی دیگری سرکوب رنگ سیاه به رنگ‌آمیزی نقطه‌ای را کنترل می‌کنند؛ عملی که
باعث پدید آمدن اسب‌های کهر می‌شود. این ژن‌ها همچنین مسوول تولید همه دیگر الگوهای رنگ‌آمیزی
گوناگونی هستند که بر پوست بدن اسب‌ها پدید می‌آیند.




تولید مثل

دوران باروری اسب نزدیک به ۳۴۰ روز یا به طور متوسط ۳۲۰ تا ۳۷۰ روز است و معمولاً حاصل آن یک کره
اسب است؛ کمتر دیده شده که یک اسب دوقلو به دنیا آورد. اسب‌ها هنگام تولد می‌توانند روی پای خود
بایستند و اندکی پس از تولد حتی می‌توانند بدوند. کره‌ها بیشتر در بهار به دنیا می‌آیند. دوران باروزی (تمایل
جنسی) ماده‌ها از آغاز بهار تا پاییز و هر ۱۹ تا ۲۲ روز روی می‌دهد. کره‌ها پس از چهار تا شش ماه از شیر
گرفته می‌شوند و خوراک معمولی دارند.

از نظر اندام و فیزیک، یک اسب می‌تواند در ۱۸ ماهگی جفت گیری کند اما برای اسب‌های اهلی بویژه
ماده‌ها، کمتر دیده شده که تا پیش از سه سالگی اجازهٔ جفت گیری به آن‌ها داده شود. اسب چهارساله،
بالغ دانسته می‌شود هرچند که استخوان‌بندی آن تا شش سالگی همچنان رشد می‌کند. بزرگسال شدن
اسب‌ها به نژاد، جنس، روش نگهداری از آن‌ها و ابعادشان بستگی دارد. اسب‌های بزرگتر، به زمان بیشتری
برای رشد کامل و تغییر بافت استخوان هایشان نیاز دارند و بیشتر طول می‌کشد تا برخی غضروف‌ها به
استخوان تبدیل شود.

بسته به بزرگسالی، پرورش و کاری که از یک اسب انتظار می‌رود، آن‌ها را در سن دو تا چهارسالگی برای
سواری و زیر زین آموزش می‌دهند. اسب‌های مسابقه مانند درساژ عموماً تا پیش از سه یا چهارسالگی زیر
زین نمی‌روند چون ماهیچه‌ها و استخوان‌های آن‌ها به اندازهٔ کافی محکم نیست.
در این میان نژاد تروبرد یک استثنا است، این اسب مسابقه در برخی کشورها در سن دوسالگی زیر زین
می‌رود.
اسب‌هایی که برای مسابقه‌های استقامت پرورش می‌یابند تا پیش از ۶۰ ماهگی (پنج سالگی) بزرگسال
دانسته نمی‌شوند.
ساعت : 4:31 am | نویسنده : admin | پوگو | مطلب قبلی
پوگو | next page | next page